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Natural constants

Caesium hyperfine frequency ∆νCs 9.192 631 770 ×109 s−1

Speed of light in vacuum c 2.997 924 58 ×108 m · s−1

Planck constant h 6.626 070 15 ×10−34 kg · m2 · s−1

Elementary charge e 1.602 176 634 ×10−19 A · s
Boltzmann constant kB 1.380 649 ×10−23 K−1 · kg · m2 · s−2

Avogadro constant NA 6.022 140 76 ×1023 mol−1

Luminous efficacy of radiation Kcd 6.83 ×102 cd · kg−1 · m−2 · s3 · sr
Magnetic constant µ0 1.256 637 062 12(19) ×10−6 A−2 · kg · m · s−2

Electric constant ε0 8.854 187 812 8(13) ×10−12 A2 · kg−1 · m−3 · s4

Gas constant R 8.314 462 618... K−1 · kg · m2 · mol−1 · s−2

Stefan-Boltzmann constant σ 5.670 374 419... ×10−8 K−4 · kg · s−3

Gravitational constant G 6.674 30(15) ×10−11 kg−1 · m3 · s−2

Electron mass me 9.109 383 701 5(28) ×10−31 kg
Neutron mass mn 1.674 927 498 04(95) ×10−27 kg

Proton mass mp 1.672 621 923 69(51) ×10−27 kg
Standard acceleration of gravity gn 9.806 65 m · s−2
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Multiple Choice
Duration: 60 minutes
Marks: 21 points (1 point for each correct answer)

• Multiple-Choice (MC) questions have several statements, of which exactly one is correct. If you
mark exactly the right answer on the answer sheet, you get one point, otherwise zero.

Question 1.1 (MC)
What is the approximate mass of water contained
in Lake Geneva?

A) 1× 1012 kg B) 1× 1014 kg

C) 1× 1016 kg D) 1× 1018 kg

Question 1.2 (MC)
Stars are formed by the gravitational collapse of
a gas cloud. The cloud collapses if its radius ex-
ceeds a limit called Jeans’ length λ. For a cloud of
temperature T , density ρ and made of molecules of
mass m, how is λ defined?

A) λ =
√

15kBTmρ
4πG B) λ =

√
15kBmρ
4πGT

C) λ =
√

15kBT
4πGmρ D) λ =

√
15kB

4πGTmρ

Question 1.3 (MC)
Evaluate

∫ r
0

√
r2 − x2dx for r > 0.

A) 0 B) πr2

2 C) r2

2

D) πr2

4 E) r2

sin(1) F) 2πr

Question 1.4 (MC)
Let us consider two vectors ~v and ~ω. The angle
between the two vectors is θ, and v and ω are the
norms of ~v and ~ω, respectively. What is the norm
of (~v + ~ω)× (~ω + ~v)?

A) 0 B) v2 + 2ωv sin(θ) + ω2

C) v2 + 2ωv + ω2 D) 2ωv sin(θ)

E) 2ωv F) sin(θ)
(
v2 + 2ωv + ω2

)

Question 1.5 (MC)
Two balls of mass ma and mb respectively collide.
The balls are restricted to one dimension (meaning
that they continue moving along the same axis af-
ter the collision). Originally A was moving with
velocity ~v and B was at rest. After the collision,
A continues moving with a speed of approximately
‖~v‖. Which of the following statements can be true?
Assume that the balls undergo an elastic collision
with no outside forces.
(p � q (p � q) means p is much smaller (larger)
than q)
I: ma = mb, II: ma � mb, III: ma � mb

A) None of them B) Only I

C) Only II D) Only III

E) Only II and III F) I, II and III

Question 1.6 (MC)
A geostationary orbit is an orbit that has the same
period as the Earth’s rotation around its own axis.
What is the height h from the ground of a satel-
lite on such an orbit, assuming that the mass of
the Earth is M = 5.97× 1024 kg, that its radius is
R = 6370 km and that the satellite has mass 600 kg?
You can assume a circular orbit.

A) 720 km B) 36 000 km

C) 42 000 km D) 87 000 km
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Question 1.7 (MC)
Consider a massive planet orbiting a star with an
elliptical orbit as shown on the diagram. Assume
that this system is isolated and that the only inter-
action is the gravitational attraction between the
star and the planet.

Star
AB

Planet

Which of the following statements correctly de-
scribes the kinetic energy of the star and the
gravitational potential energy of the system when
the planet is at point A (KA, UA) and point B
(KB, UB)?

A) KA > KB and UA > UB

B) KA > KB and UA < UB

C) KA < KB and UA > UB

D) KA < KB and UA < UB

E) KA = KB and UA < UB

F) KA = KB and UA = UB

Question 1.8 (MC)
Bob went on a lake in a small boat. For some rea-
son, he took a bowling ball of mass 6 kg and radius
10 cm with him. He is now wondering what would
happen to the water level if he was to drop the ball
in the lake. The volume of the holes of the bowling
ball can be neglected.

A) The water level would decrease.

B) The water level would remain the same.

C) The water level would increase.

D) Not enough information is given.

Question 1.9 (MC)
Let us consider an inelastic rope of length L at-
tached to two fixed points A and B separated by
a distance D < L. On this rope we place a pulley
that can move freely without friction along the rope
and to which we let a mass m hang (similarly to
a necklace with a pendant). The rope is assumed
to remain taut. Which of the following trajectories
can the material point follow?

A) I B) II C) III D) IV

Question 1.10 (MC)
We have two lenses of focal lengths of absolute value
40mm and 60mm, respectively. We want to cre-
ate an afocal system, meaning that parallel rays
entering the system also exit it parallel. At which
distance from one another should the two lenses be
placed to create such a system?

A) 0mm B) 20mm C) 40mm

D) 50mm E) 60mm F) 100mm

G) It depends on the lenses.
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Question 1.11 (MC)
Square park is a 1000m by 1000m recreational area.
The northern half is covered with water, the south-
ern half is grassland. Alice is at the south-western
corner of the area. She wants to visit her friend
Bob, who is at the north-eastern corner. She runs
with a speed of 5m · s−1 and swims with a speed
of 1m · s−1. At what angle (clockwise, zero being
north) should she start running, if she wants to get
there as quickly as possible?

A) 0◦ B) 10.10◦ C) 45◦

D) 61.24◦ E) 63.43◦

Question 1.12 (MC)
Consider a water circulation system consisting of
a pipe of length 10m and a pump. We denote the
water flow rate for this system R0. When a sec-
ond pipe of 10m is added in parallel to the pump
(dashed line), the water flow rate through the pump
changes to R1. What is ratio R1

R0
, assuming that

the pumping power remains constant? The pres-
sure loss along the pipe can be approximated to be
proportional to the length of the pipe and velocity
of the water.

Pump

A) 1
2 B) 1√

2
C)

√
2 D) 2

Question 1.13 (MC)
What is the mean absolute value of the speed along
the x-axis of particles of mass m in an ideal gas
with temperature T?

A) 3
2kBT B) 1

2kBT C) 3kBT
m

D) kBT
m E)

√
3kBT
m F)

√
kBT
m

Question 1.14 (MC)
Which of these diagrams cannot represent a Carnot
cycle?

A)

logV

logP

B)

S

logP

C)

logV

logT

D)

S

logT

Question 1.15 (MC)
Consider a copper hollow ball with radius R > 0
and finite thickness 0 < d < R submerged in water.
Initially there are no resultant forces acting on it.
The ball is heated up, without changing the temper-
ature of the surrounding water. What accurately
describes what will happen (and why)?

A) The ball will start moving upwards because its
mass is decreasing.

B) The ball will start moving upwards because its
volume is increasing.

C) The ball will start moving downwards because
its mass is increasing.

D) The ball will start moving downwards because
its volume is decreasing.

E) Nothing will happen, the temperature of the
ball does not change the forces acting on it.

F) The ball will start oscillating around its initial
position.
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Question 1.16 (MC)
Out of the following configurations, which has the
greatest value of electric field strength at point P?
Here, the ⊕ and 	 symbols represent point charges
of value + |Q| and − |Q|, respectively.

A)

⊕ ⊕P

B)

	 ⊕P

C)

	 	P

D)

⊕ ⊕ P

E)

⊕ 	 P

F)

	 	 P

Question 1.17 (MC)
What is the voltage of the battery on the left of the
diagram?

U

3Ω

4Ω

3A

2Ω

20V+
−

+
−

A) 0V B) 9V C) 12V D) 15V E) 30V

F) This circuit contains a short.

Question 1.18 (MC)
Consider two infinite, positively charged parallel
plates of equal charge density. Is the midpoint M
between the two plates an equilibrium point? If so,
what type of equilibrium is it?

A) M is not an equilibrium point.

B) M is a stable equilibrium point.

C) M is an unstable equilibrium point.

D) M is a neutral equilibrium point.

Question 1.19 (MC)
A charged particle of mass m and charge q is mov-
ing with velocity ~v, parallel to a magnetic field of
strength B. What is the acceleration (modulus and
direction) of the particle?

A) 0

B) Bqv, perpendicular to the velocity

C) Bqv, parallel to the velocity

D) Bqv
m , perpendicular to the velocity

E) Bqv
m , parallel to the velocity

F) Bq
m , parallel to the magnetic field

Question 1.20 (MC)
A mass is attached to a horizontal spring on a sur-
face without friction. It is displaced a distance 1m
away from its equilibrium position. After being re-
leased, it returns to its equilibrium position for the
first time after t = 1 s. Air resistance is negligible.
What was the norm of its acceleration when it was
released?

A) a = 2m · s−2 B) a = 2πm · s−2

C) a = 1
16m · s−2 D) a = π2

4 m · s−2

E) a = π
2m · s−2 F) a = 4π2m · s−2

Question 1.21 (MC)
You are in a sunlit room, watching a very small
dust particle that is suspended in mid-air just in
front of a loudspeaker that is playing some very loud
music. The loudspeaker is pointing in a horizontal
direction. In what way do you see the dust particle
moving?

A) Up and down.

B) Left and right.

C) Continuously away from the loudspeaker.

D) No motion.
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Multiple Choice: answer sheet
Indicate your answers in the corresponding boxes on this page.

Last name: First name: Total:

A B C D E F G
Question 1.1 � � � �

Question 1.2 � � � �

Question 1.3 � � � � � �

Question 1.4 � � � � � �

Question 1.5 � � � � � �

Question 1.6 � � � �

Question 1.7 � � � � � �

Question 1.8 � � � �

Question 1.9 � � � �

Question 1.10 � � � � � � �

Question 1.11 � � � � �

Question 1.12 � � � �

Question 1.13 � � � � � �

Question 1.14 � � � �

Question 1.15 � � � � � �

Question 1.16 � � � � � �

Question 1.17 � � � � � �

Question 1.18 � � � �

Question 1.19 � � � � � �

Question 1.20 � � � � � �

Question 1.21 � � � �
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Multiple Choice: solutions

A B C D E F G
Question 1.1 � � � �

Question 1.2 � � � �

Question 1.3 � � � � � �

Question 1.4 � � � � � �

Question 1.5 � � � � � �

Question 1.6 � � � �

Question 1.7 � � � � � �

Question 1.8 � � � �

Question 1.9 � � � �

Question 1.10 � � � � � � �

Question 1.11 � � � � �

Question 1.12 � � � �

Question 1.13 � � � � � �

Question 1.14 � � � �

Question 1.15 � � � � � �

Question 1.16 � � � � � �

Question 1.17 � � � � � �

Question 1.18 � � � �

Question 1.19 � � � � � �

Question 1.20 � � � � � �

Question 1.21 � � � �
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Natural constants

Caesium hyperfine frequency ∆νCs 9.192 631 770 ×109 s−1

Speed of light in vacuum c 2.997 924 58 ×108 m · s−1

Planck constant h 6.626 070 15 ×10−34 kg · m2 · s−1

Elementary charge e 1.602 176 634 ×10−19 A · s
Boltzmann constant kB 1.380 649 ×10−23 K−1 · kg · m2 · s−2

Avogadro constant NA 6.022 140 76 ×1023 mol−1

Luminous efficacy of radiation Kcd 6.83 ×102 cd · kg−1 · m−2 · s3 · sr
Magnetic constant µ0 1.256 637 062 12(19) ×10−6 A−2 · kg · m · s−2

Electric constant ε0 8.854 187 812 8(13) ×10−12 A2 · kg−1 · m−3 · s4

Gas constant R 8.314 462 618... K−1 · kg · m2 · mol−1 · s−2

Stefan-Boltzmann constant σ 5.670 374 419... ×10−8 K−4 · kg · s−3

Gravitational constant G 6.674 30(15) ×10−11 kg−1 · m3 · s−2

Electron mass me 9.109 383 701 5(28) ×10−31 kg
Neutron mass mn 1.674 927 498 04(95) ×10−27 kg

Proton mass mp 1.672 621 923 69(51) ×10−27 kg
Standard acceleration of gravity gn 9.806 65 m · s−2
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Long problems
Duration: 120 minutes
Marks: 48 points (3× 16)

Start each problem on a new sheet in order to ease the correction.

General hint: The problems consist of partially independent problem parts, so if you get stuck, it is a good
idea to read further ahead and to continue with an easier part.

Long problem 2.1: Egg stability (16 points)
Let us consider an egg represented by a homo-
geneous solid of revolution with profile f(x) =
1
2

√
x− x4 on the domain x ∈ [a = 0, b = 1]. The

units of length are arbitrary.

a = 0
x

b = 1c

f(x) r(x)

Part A. Centre of gravity and radius (4.5 points)

The centre of gravity c of a solid of revolution lies
on its axis and can be calculated by dividing it
into discs of infinitesimal thickness dx and volume
πf2(x)dx:

c =
1

V

∫ b

a
xπf2(x)dx,

where V is the volume of the solid.

i. (3 pts) Calculate c for the egg.

ii. (0.5 pts) If a factor other than 1
2 had been

chosen in the egg’s f(x) profile, what would have
been the impact on the value of c? Justify.

iii. (1 pt) Find an expression for the “radius” r(x)
of the egg, i.e. the distance between the centre of
gravity and a point (x, f(x)) on the surface of the
egg. The result should be of the form

√
P (x), where

P (x) is a polynomial.

Part B. Analytical interlude (3 points)

Let g(x) > 0 be a strictly positive differentiable
function.

i. (2 pts) Expand d
√

g(x)
dx , the derivative of the

square root of g(x).

ii. (1 pt) Show that the sign of d
√

g(x)
dx is always

equal to that of dg(x)
dx .

Part C. Stability of the laid egg (8.5 points)

We now place the egg on a horizontal surface and
identify the point where the egg is in contact with
the surface by its x coordinate.

a = 0

b = 1
x

i. (2 pts) The positions a = 0 and b = 1 are equi-
librium positions, due to the symmetry of revolution.
Determine the stability of these two positions from
the expression r(x) found in A.iii. and using the
result shown in B.ii.

There is a position a < s < b where the egg lying
on its side is in stable equilibrium.

ii. (1 pt) What is the peculiarity of r(s)?

iii. (1.5 pts) Find a polynomial equation for s.

Unfortunately, this polynomial equation is not (eas-
ily) solvable. So we are going to look for an approx-
imation using a Taylor expansion.

iv. (1 pt) Choose a good starting point t for the
development. Justify your choice.

v. (2 pts) Expand the polynomial equation around
the chosen t to first order to obtain an affine equa-
tion.

vi. (1 pt) Find the solution s̃ to this new equation
and calculate r(s̃) as well.
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Long problem 2.2: Clément-Desormes exper-
iment (16 points)

The Clément-Desormes experiment is a thermody-
namics experiment used to determine the adiabatic
index γ = CP

CV
of an ideal gas, where CP and CV

are the heat capacities at constant pressure and
constant volume, respectively. It consists of a con-
tainer filled with the studied gas connected to a
valve, a manometer (e.g. a mercury manometer)
and a pump, see the figure. The three steps of the
experiment consist of first increasing the pressure
of the gas with the pump, then releasing the excess
pressure through the valve and finally waiting for
the gas to thermalize. In the following, we will con-
sider the system that contains the n moles of gas
remaining in the container after the pressure release
(initially, there is more gas in the container than n
moles).

Figure 1: Schematic representation of the Clément-
Desormes experiment.

Part A. Mercury manometers (2.25 points)

A mercury manometer uses changes in the height of
a column of mercury to determine the pressure of a
gas, see the figure. Correspondingly, a millimeter
of mercury, denoted mmHg, has become a unit of
pressure. It is defined as the hydrostatic pressure
generated by a column of mercury one millimeter
high at a temperature of 0 ◦C.

i. (0.5 pts) What is the hydrostatic pressure of a
column of fluid of density ρ and height h?

ii. (0.75 pts) How is 1bar expressed in mmHg?
The density of mercury at ambient pressure and
temperature T = 0 ◦C is 13.595 g · cm−3.

iii. (1 pt) Why is mercury particularly convenient
to build such manometers as compared to other
liquids?

Part B. Pumping and releasing (2 points)

One first uses the pump to increase the gas pres-
sure to get from (P0, V0) to (PA, Vtot) isothermically,
where PA = P0 + hA = 780.31mmHg and Vtot is
the total volume of the gas container assumed to
remain fixed for the rest of the experiment. The
(partial) volume of the n moles at this stage is
VA < Vtot. So, at this point we have pressure and
volume (PA, VA) for the n moles of gas considered.
One then quickly opens the valve to let some of the
gas escape and cancel the overpressure, and closes
the valve directly after. The manometer tube is
arbitrarily thin so the volume change necessary to
modify the mercury height is negligible. We are
only left with our n moles of gas with pressure and
volume (PB, VB) = (P0, Vtot). The ambient temper-
ature is T0 = 12.5 ◦C and the ambient pressure is
P0 = 766.50mmHg.

i. (0.5 pts) What type of thermodynamic process
happens between the situations A = (PA, VA) and
B = (PB, VB)? Why?

ii. (1.5 pts) For such a process, what equation
relates the pressure and volume in situations A and
B?

Part C. Back to thermal equilibrium (2.5 points)

After a while, the systems reaches again thermal
equilibrium with respect to the exterior. One
ends up with pressure and volume (PC , VC) =
(P0 + hC , Vtot), with hC = 3.61mmHg.

i. (0.5 pts) What type of thermodynamic pro-
cess happens between the situations B and C =
(PC , VC)? Why?

ii. (0.5 pts) What is the temperature TC in situa-
tion C?

iii. (1.5 pts) With what equation can one relate
the pressure and volume in situations A and C?

Part D. Finding the adiabatic index (9.25 points)

We can now consider the overall process to deter-
mine the adiabatic index γ from the previous mea-
surements and results.

i. (1.25 pts) Draw schematically in a P -V diagram
the thermodynamic processes acting on our system
of n moles from step A to C.
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ii. (2 pts) Use your equations from the previ-
ous parts to express P0+hA

P0
as a function of (and

including all) P0, hA, hC and γ.
iii. (2.5 pts) Noticing that hA � P0 and hC � P0

(� means “much smaller than”), simplify your ex-
pression for P0+hA

P0
.

Hint: for x � 1, one can approximate (1 + x)α ≈
1 + αx.
Hint: you can neglect

(
hA
P0

)2
,
(
hC
P0

)2
, hAhC

P 2
0

and
higher order terms.
iv. (1 pt) Using your previous results, express the
adiabatic index γ as a function of hA and hC .

v. (1 pt) Compute numerically the adiabatic index
γ from the given measurements.

vi. (1 pt) From the equipartition theorem, it is
possible to derive that CV = f

2R and CP = f+2
2 R,

where f is the number of degrees of freedom allowed
for the gas molecules. The gas studied here has
f = 5 degrees of freedom. What is the relative
difference between the theoretical and the experi-
mental values of the adiabatic index γ?

vii. (0.5 pts) What could be possible reasons for
this difference?
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Long problem 2.3: Mirror charges (16 points)
A very common problem in electrostatics is to deter-
mine the electric potential of a system composed of
point charges and conductors of various shapes. In
this exercise, we will develop a trick, the so-called
method of mirror charges or method of images, to
greatly simplify such problems in cases with appro-
priate symmetry. We consider the SI unit system
in this exercise.
Part A. Electric potential and conductors (2.25 points)
In this first part, we will discuss Faraday cages.
i. (0.25 pts) Write down the electric potential V
due to a point charge q as a function of the distance
r from the charge.
ii. (0.5 pts) Write down the electric potential
V due to N point charges qi, i ∈ 1, 2, ..., N , as a
function of the distances ri from each charge qi.
iii. (0.5 pts) Consider the situation shown in
Fig. B.1. What can you say about the electric po-
tential on the surface of the grounded conducting
material?
iv. (1 pt) During a storm, is it safer to stay in
one’s car or outside? Why? Argue using the answer
to the previous question.
Part B. Plane mirror charge (4.25 points)
Consider again the situation illustrated in Fig. B.1.
The goal of this part is to determine the electric
potential at any point above the plane. For this,
a trick can be used to simplify the situation con-
siderably. The idea is to introduce an imaginary
“mirror” charge in order to reproduce the boundary
conditions set by the conducting material.
In electrostatics, if two physical systems have po-
tentials with the same boundary conditions, then
both situations are physically equivalent.
So, in order to determine the electric potential of
this system, we would like to find another easier
system to describe its potential.

Q1

d

Figure B.1: Infinitely long grounded conduc-
tive plane and a charge Q1 at a position ~r1 =
(x1, y1, z1) = (0, 0, d).

i. (0.25 pts) What are the boundary conditions
for the electrostatic potential V of this system?

ii. (1.5 pts) Let us imagine a second physical sys-
tem with the same charge Q1 at the same position
~r1 as in Fig. B.1 but without the conducting plane.
Our goal is to find a configuration with a second
charge Q2 at position ~r2 that has the same bound-
ary conditions as in Fig. B.1. What should Q2 and
~r2 = (x2, y2, z2) be for this to happen? Why?

iii. (1 pt) Using your previous results, compute
the electric potential V (x, y, z) above the ground
plane in the system of Fig. B.1 as a function of the
coordinates (x, y, z), the distance d and the charge
Q1. The expression can be left as a sum of two
terms, it does not have to be fully simplified.

iv. (1.5 pts) Draw schematically the field lines
of the system as shown in Fig. B.1, consisting of
the point charge and ground plane system, assum-
ing that Q1 > 0 (in a separate sketch, not on the
problem sheet).

Part C. Right angle mirror charges (5.5 points)

We will now consider more complex conductor ge-
ometries.

i. (2.5 pts) Let us consider the system shown in
Fig. C.1. What is the number N of mirror charges
needed to reproduce the conductor boundary condi-
tions? What are their values Qi and their positions
~ri = (xi, yi, zi) for i = 1, 2, ..., N? Why?

Q1d

d

Figure C.1: Two infinitely long grounded half-plane
conductors at a right-angle and a charge Q1 at the
position ~r1 = (x1, y1, z1) = (d, 0, d).
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ii. (1 pt) What is the corresponding potential
V (x, y, z) as a function of the coordinates (x, y, z),
the distance d and the charge Q1? The expression
can be left as a sum of N terms, it does not have
to be fully simplified.

iii. (2 pts) Draw schematically the field lines of the
charge-half-plane conductors system, assuming that
Q1 < 0 (in a separate sketch, not on the problem
sheet).

Part D. Circular mirror charges (4 points)

It is also possible to define mirror charges for curved
geometries.

i. (2.5 pts) Let us now consider the system shown
in Fig. D.1. It turns out that only one mirror charge
is needed to reproduce the corresponding bound-
ary conditions. What is its value Q2 and position
~r2 = (x2, y2, z2)?
Hint: you are allowed to use without proof that a
potential satisfying the appropriate boundary condi-
tions at the positions (r, 0, 0) and (−r, 0, 0) satisfies
the boundary conditions on the whole sphere.

r

r/2

O Q1

Figure D.1: Spherical grounded conductor of radius
r with centre O at position ~r0 = (0, 0, 0) and charge
Q1 at position ~r1 = (x1, y1, z1) = (r/2, 0, 0). We see
here a slice at y = 0 of the sphere in the xz-plane.

ii. (1.5 pts) What is the corresponding potential
V (x, y, z) as a function of the coordinates (x, y, z),
the radius r and the charge Q1? The expression
can be left as a sum of two terms, it does not have
to be fully simplified.
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Long problems: solutions
Long problem 2.1: Egg stability 16

Let us consider an egg represented by a homogeneous solid of revolution with profile
f(x) = 1

2

√
x− x4 on the domain x ∈ [a = 0, b = 1]. The units of length are arbitrary.

a = 0
x

b = 1c

f(x) r(x)

Part A. Centre of gravity and radius 4.5

The centre of gravity c of a solid of revolution lies on its axis and can be calculated by
dividing it into discs of infinitesimal thickness dx and volume πf2(x)dx:

c =
1

V

∫ b

a
xπf2(x)dx,

where V is the volume of the solid.

i. Calculate c for the egg. 3

Following the idea of splitting the egg into disk-shaped infinitely thin slices, the volume is given by:

V =

∫ b

a
πf2(x)dx.

1

Thus for the egg, we have

c =

∫ 1
0 x1

4

(
x− x4

)
dx∫ 1

0
1
4 (x− x4)dx

=

∫ 1
0

(
x2 − x5

)
dx∫ 1

0 (x− x4)dx
=

[
1
3x

3 − 1
6x

6
]1
0[

1
2x

2 − 1
5x

5
]1
0

,

1

And finally

c =
1
3 − 1

6
1
2 − 1

5

=
1
6
3
10

=
5

9
.

1

ii. If a factor other than 1
2 had been chosen in the egg’s f(x) profile, what would have been

the impact on the value of c? Justify. 0.5
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c wouldn’t change, because the factor (squared) appears both in the numerator and in the denominator of
c. 0.5

This is the same reason why the egg’s density doesn’t play a role, nor does π.

iii. Find an expression for the “radius” r(x) of the egg, i.e. the distance between the centre
of gravity and a point (x, f(x)) on the surface of the egg. The result should be of the form√
P (x), where P (x) is a polynomial. 1

We can use the Pythagorean theorem:

r(x) =

√
f2(x) + (x− c)2,

0.5

and we get

r(x) =

√
1

4
x− 1

4
x4 + x2 + c2 − 2xc =

√
−1

4
x4 + x2 − 31

36
x+

25

81
.

0.5

Part B. Analytical interlude 3

Let g(x) > 0 be a strictly positive differentiable function.

i. Expand d
√

g(x)
dx , the derivative of the square root of g(x). 2

We can use the generic formula
dgn(x)

dx
= ngn−1(x)

dg(x)
dx

.

1

Here we have the case n = 1
2 , so

d
√
g(x)

dx
=

1

2
√
g(x)

dg(x)
dx

.

1

Full points are given as long as the answer is of the desired final form, even if the generic formula is not
explicitly stated.

ii. Show that the sign of d
√

g(x)
dx is always equal to that of dg(x)

dx . 1

g(x) > 0 ⇒
√
g(x) > 0 ⇒ 1

2
√
g(x)

> 0.

0.5

Thus the factor in front of the derivative does not change the sign, so both will always be equal. This is
in particular valid for the case 0: if the derivative of g(x) is null, so is the derivative of

√
g(x). 0.5

Part C. Stability of the laid egg 8.5

We now place the egg on a horizontal surface and identify the point where the egg is in
contact with the surface by its x coordinate.
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a = 0

b = 1
x

i. The positions a = 0 and b = 1 are equilibrium positions, due to the symmetry of revolution.
Determine the stability of these two positions from the expression r(x) found in A.iii. and
using the result shown in B.ii. 2

To study the stability, we need to compute the derivative of the radius found in A.iii. But we are only
interested in its sign, so instead, and according to B.ii., we can compute the derivative of its square, P (x). 0.5

dP (x)

dx
= −x3 + 2x− 31

36
.

0.5

For x = a = 0, dP(x)
dx

∣∣∣
a
= −31

36 < 0.
This means that all values slightly larger than a lead to a smaller r2, thus also to a smaller r. Because
a is at the end of the domain, it corresponds to a local maximum of the radius, and therefore a is an
instable equilibrium. 0.5

For x = b = 1, dP(x)
dx

∣∣∣
b
= −1 + 2− 31

36 = 5
36 > 0.

This means that all values slightly smaller than b lead again to a smaller r2, thus also to a smaller r.
Because b is at the other end of the domain, it corresponds to a local maximum of the radius, and therefore
b is an instable equilibrium as well. 0.5

There is a position a < s < b where the egg lying on its side is in stable equilibrium.

ii. What is the peculiarity of r(s)? 1

It is a local minimum of r(x), and in fact its only minimum. 1

Give 0.5 point if it is only mentioned that the segment of r(s) is perpendicular to the egg’s surface.

iii. Find a polynomial equation for s. 1.5

The condition for s is that the derivative of the radius is zero. 0.5

Again we can use B.ii. and only consider the derivative of P (x). 0.5

Thus the equation is
−s3 + 2s− 31

36
= 0.

0.5
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Unfortunately, this polynomial equation is not (easily) solvable. So we are going to look for
an approximation using a Taylor expansion.
iv. Choose a good starting point t for the development. Justify your choice. 1
If the egg was symmetric, that is an ellipse, s would be in the center (12). 0.5
The egg is not very dissymmetric, so t = 1

2 is a good starting point, and easy to compute with. 0.5
Valid but less justifiable points include t = c (but due to the slope of f(x) in the middle portion of the egg,
it should be clear that t < c) and t = 1− c. Those are awarded 0.5 points and no double penalty in the
subsequent questions.
v. Expand the polynomial equation around the chosen t to first order to obtain an affine
equation. 2
At order zero, we have (remember that we are working with the derivative of P (x))

dP (x)

dx

∣∣∣∣
t

= −
(
1

2

)3

+ 2
1

2
− 31

36
= −1

8
+ 1− 31

36
=

1

72
.

0.5
At order one, we have

d2P (x)

dx2

∣∣∣∣
t

= −3

(
1

2

)2

+ 2 = −3

4
+ 2 =

5

4
.

0.5
Therefore the equation becomes

1

72
+

5

4
(x− t) = 0.

0.5
And finally

5

4
x− 11

18
= 0.

0.5
For t = c, this gives 87

81x− 1511
2916 = 0.

For t = 1− c, this gives 114
81 x− 1999

2916 = 0.
The equation’s factors are not required to be fully simplified.
vi. Find the solution s̃ to this new equation and calculate r(s̃) as well. 1
Solving the equation, we get

s̃ =
4

5

11

18
=

22

45
≈ 0.489.

0.5
For t = c, this gives 1511

3132 ≈ 0.482.
For t = 1− c, this gives 1999

4104 ≈ 0.487.
This shows that our preferred choice of t was good (the exact value is ≈ 0.489).
Therefore the minimal radius is approximately

r(s) ≈ r(s̃) =

√
−1

4

(
22

45

)4

+

(
22

45

)2

− 31

36

22

45
+

25

81
=

√
921697

8201250
≈ 0.335.

0.5
For t = c and t = 1− c, this gives the same result to three figures.
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Long problem 2.2: Clément-Desormes experiment 16

The Clément-Desormes experiment is a thermodynamics experiment used to determine the
adiabatic index γ = CP

CV
of an ideal gas, where CP and CV are the heat capacities at constant

pressure and constant volume, respectively. It consists of a container filled with the studied
gas connected to a valve, a manometer (e.g. a mercury manometer) and a pump, see the
figure. The three steps of the experiment consist of first increasing the pressure of the gas
with the pump, then releasing the excess pressure through the valve and finally waiting for
the gas to thermalize. In the following, we will consider the system that contains the n
moles of gas remaining in the container after the pressure release (initially, there is more
gas in the container than n moles).

Figure 1: Schematic representation of the Clément-Desormes experiment.

Part A. Mercury manometers 2.25

A mercury manometer uses changes in the height of a column of mercury to determine
the pressure of a gas, see the figure. Correspondingly, a millimeter of mercury, denoted
mmHg, has become a unit of pressure. It is defined as the hydrostatic pressure generated by
a column of mercury one millimeter high at a temperature of 0 ◦C.

i. What is the hydrostatic pressure of a column of fluid of density ρ and height h? 0.5

The hydrostatic pressure is given by p = ρgh. 0.5

ii. How is 1bar expressed in mmHg? The density of mercury at ambient pressure and
temperature T = 0 ◦C is 13.595 g · cm−3. 0.75

A bar is defined as 1bar = 1 × 105 Pa, so h = 1×105 Pa
ρg = 1×105 Pa

13.595 g/cm3·9.806 65m·s−2 = 750mm. So,
1bar = 750mmHg. 0.75

iii. Why is mercury particularly convenient to build such manometers as compared to other
liquids? 1

The high density of mercury as compared to e.g. water (about 13.6 times higher) is convenient because
the corresponding height change between two different pressures is significantly lower than with less dense
liquids. 1

Part B. Pumping and releasing 2

One first uses the pump to increase the gas pressure to get from (P0, V0) to (PA, Vtot)
isothermically, where PA = P0 + hA = 780.31mmHg and Vtot is the total volume of the gas
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container assumed to remain fixed for the rest of the experiment. The (partial) volume of
the n moles at this stage is VA < Vtot. So, at this point we have pressure and volume (PA, VA)
for the n moles of gas considered. One then quickly opens the valve to let some of the gas
escape and cancel the overpressure, and closes the valve directly after. The manometer tube
is arbitrarily thin so the volume change necessary to modify the mercury height is negligible.
We are only left with our n moles of gas with pressure and volume (PB, VB) = (P0, Vtot). The
ambient temperature is T0 = 12.5 ◦C and the ambient pressure is P0 = 766.50mmHg.

i. What type of thermodynamic process happens between the situations A = (PA, VA) and
B = (PB, VB)? Why? 0.5

The process is adiabatic. 0.25

The reason is that we are considering a fast process such that no heat exchane occurs. 0.25

ii. For such a process, what equation relates the pressure and volume in situations A and B? 1.5

For an adiabtic process we have PV γ = constant. 1

So, one finds PAV
γ
A = PBV

γ
B . 0.5

As long as the latter is given, full points are awarded.

Part C. Back to thermal equilibrium 2.5

After a while, the systems reaches again thermal equilibrium with respect to the exterior.
One ends up with pressure and volume (PC , VC) = (P0 + hC , Vtot), with hC = 3.61mmHg.

i. What type of thermodynamic process happens between the situations B and C = (PC , VC)?
Why? 0.5

The process is isochoric. 0.25

The reason is that the volume does not change between situations B and C. 0.25

ii. What is the temperature TC in situation C? 0.5

As the system has thermalized with the exterior, the temperature is the ambient temperature, namely
TC = 12.5 ◦C. 0.5

iii. With what equation can one relate the pressure and volume in situations A and C? 1.5

We note that the temperature in case A is the same as the temperature in case C, since the initial pumping
is an isothermic process. 0.5

With this, we can use the ideal gas law to write PAVA = PCVC . 1

Part D. Finding the adiabatic index 9.25

We can now consider the overall process to determine the adiabatic index γ from the previous
measurements and results.

i. Draw schematically in a P -V diagram the thermodynamic processes acting on our system
of n moles from step A to C. 1.25

The diagram should schematically look like this:
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V
VA VB = VC = Vtot

P

PB = P0

PC

PA
A

B

C

Figure D.1: P -V diagram of the experiment

The diagram axes are properly named as V and P (or p), respectively. 0.25

The ordering PA > PC > PB is respected. 0.25

The ordering VA < VB = VC is respected. 0.25

The adiabatic expansion has qualitatively the correct shape (a curved convex line). 0.25

The direction of the processes is shown and correct. 0.25

Remove 0.5 points if a line connects C and A (with a minimum of 0 points for the question).

ii. Use your equations from the previous parts to express P0+hA
P0

as a function of (and
including all) P0, hA, hC and γ. 2

We recall from the previous parts that PAV
γ
A = PBV

γ
B and PAVA = PCVC .

From PAV
γ
A = PBV

γ
B we find

(P0 + hA)V
γ
A = P0V

γ
tot

which gives
P0 + hA

P0
=

(
Vtot
VA

)γ

.

1

From PAVA = PCVC we get
Vtot
VA

=
P0 + hA
P0 + hC

. 0.5

Combining both equations gives
P0 + hA

P0
=

(
P0 + hA
P0 + hC

)γ
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. 0.5

iii. Noticing that hA � P0 and hC � P0 (� means “much smaller than”), simplify your
expression for P0+hA

P0
.

Hint: for x � 1, one can approximate (1 + x)α ≈ 1 + αx.
Hint: you can neglect

(
hA
P0

)2
,
(
hC
P0

)2
, hAhC

P 2
0

and higher order terms. 2.5

We can start by rewriting the right-hand side of the previous answer in a way that we can use the given
Taylor expansion: (

P0 + hA
P0 + hC

)γ

=

(
1 +

hA
P0

)γ (
1 +

hC
P0

)−γ

1

Applying the Taylors expansion then gives (keeping only terms linear in hA
P0

and hC
P0

)(
P0 + hA
P0 + hC

)γ

≈
(
1 + γ

hA
P0

)(
1− γ

hC
P0

)
≈ 1 + γ

hA − hC
P0

.

1
We end up with

P0 + hA
P0

= 1 + γ
hA − hC

P0
.

0.5

iv. Using your previous results, express the adiabatic index γ as a function of hA and hC . 1
Isolating γ we find

γ =
hA

hA − hC
.

1

v. Compute numerically the adiabatic index γ from the given measurements. 1
Using the given numerical values for P0, P0 + hA and hC , one finds

γ =
780.31− 766.50

780.31− 766.50− 3.61
≈ 1.35.

1

vi. From the equipartition theorem, it is possible to derive that CV = f
2R and CP = f+2

2 R,
where f is the number of degrees of freedom allowed for the gas molecules. The gas studied
here has f = 5 degrees of freedom. What is the relative difference between the theoretical
and the experimental values of the adiabatic index γ? 1

Using the definition of γ we find γ = f+2
f = 7

5 = 1.4. This gives a relative difference γth−γexp
γth

= 3.6%. 1

vii. What could be possible reasons for this difference? 0.5
If at least two of the following reasons is mentioned, or any other meaningful potential reasson is mentioned,
then the full points are obtained.
The discrepancy could come from: the statistical uncertainty in the measurements, a systematic uncertainty
due to a wrong assumption (the process A → B might not be fully adiabatic, the change of volume due to
the pressure changes in the manometer might not be negligible, the initial compression might not be fully
isothermic, ...), etc. 0.5
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Long problem 2.3: Mirror charges 16

A very common problem in electrostatics is to determine the electric potential of a system
composed of point charges and conductors of various shapes. In this exercise, we will develop
a trick, the so-called method of mirror charges or method of images, to greatly simplify
such problems in cases with appropriate symmetry. We consider the SI unit system in this
exercise.

Part A. Electric potential and conductors 2.25

In this first part, we will discuss Faraday cages.

i. Write down the electric potential V due to a point charge q as a function of the distance
r from the charge. 0.25

The potential is given by V (r) = 1
4πε0

q
r . 0.25

ii. Write down the electric potential V due to N point charges qi, i ∈ 1, 2, ..., N , as a function
of the distances ri from each charge qi. 0.5

The total potential is given by the sum of the individual potentials: V = 1
4πε0

∑N
i=1

qi
ri

. 0.5

iii. Consider the situation shown in Fig. B.1. What can you say about the electric potential
on the surface of the grounded conducting material? 0.5

As we have a grounded conductor, the potential on the surface must vanish, so V = 0 on the conductor. 0.5

iv. During a storm, is it safer to stay in one’s car or outside? Why? Argue using the answer
to the previous question. 1

It is safer to stay in one’s car, because the metallic hull of the car is a grounding conducting surface for
which V = 0 holds such that its inside is protected against lightning. 1

Part B. Plane mirror charge 4.25

Consider again the situation illustrated in Fig. B.1. The goal of this part is to determine
the electric potential at any point above the plane. For this, a trick can be used to simplify
the situation considerably. The idea is to introduce an imaginary “mirror” charge in order
to reproduce the boundary conditions set by the conducting material.
In electrostatics, if two physical systems have potentials with the same boundary conditions,
then both situations are physically equivalent.
So, in order to determine the electric potential of this system, we would like to find another
easier system to describe its potential.

Q1

d

Figure B.1: Infinitely long grounded conductive plane and a charge Q1 at a position ~r1 = (x1, y1, z1) =
(0, 0, d).
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i. What are the boundary conditions for the electrostatic potential V of this system? 0.25

As seen in the previous part, the potential must satisfy V = 0 on the grounded conducting surface. 0.25

ii. Let us imagine a second physical system with the same charge Q1 at the same position ~r1
as in Fig. B.1 but without the conducting plane. Our goal is to find a configuration with a
second charge Q2 at position ~r2 that has the same boundary conditions as in Fig. B.1. What
should Q2 and ~r2 = (x2, y2, z2) be for this to happen? Why? 1.5

By symmetry, we can expect the mirror charge to lie at position ~r2 = (0, 0,−d). 0.5

If the mirror charge lies at (x2, y2, z2) = (0, 0,−d) we can check that picking Q2 = −Q1 indeed satisfies
the boundary conditions. 0.5

Indeed, this must be the case by symmetry. One could also check it explicitly using the result from Aii. 0.5

iii. Using your previous results, compute the electric potential V (x, y, z) above the ground
plane in the system of Fig. B.1 as a function of the coordinates (x, y, z), the distance d and
the charge Q1. The expression can be left as a sum of two terms, it does not have to be
fully simplified. 1

The resulting potential in the charge-plane conductor system must be the same as the charge-mirror
charge system, so we obtain for ~r = (x, y, z)

V (~r) =
1

4πε0

[
Q1√

x2 + y2 + (z − d)2
− Q1√

x2 + y2 + (z + d)2

]
.

1

The solution could be written in a different form as long as the potential is written explicitly as a function
of the required quantities.

iv. Draw schematically the field lines of the system as shown in Fig. B.1, consisting of the
point charge and ground plane system, assuming that Q1 > 0 (in a separate sketch, not on
the problem sheet). 1.5

The drawing should qualitatively look like the upper half of the following image. The lower half should
contain no field lines.

https://commons.wikimedia.org/wiki/File:VFPt_imagecharge_plane_horizontal_plusminus.svg
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The field lines should flow from the positive charge to the conductor. 0.5

The field lines should stop at the level of the conductor. 0.5

The field lines at the level of the conductor should be perpendicular to its surface. 0.5

Part C. Right angle mirror charges 5.5

We will now consider more complex conductor geometries.

i. Let us consider the system shown in Fig. C.1. What is the number N of mirror charges
needed to reproduce the conductor boundary conditions? What are their values Qi and
their positions ~ri = (xi, yi, zi) for i = 1, 2, ..., N? Why?

Q1d

d

Figure C.1: Two infinitely long grounded half-plane conductors at a right-angle and a charge Q1 at the
position ~r1 = (x1, y1, z1) = (d, 0, d).

2.5

We want the potential to vanish on the conductor plates.

By symmetry considerations, we can convince ourselves that the mirror charges should lie at the positions
~r2 = (−d, 0, d), ~r3 = (−d, 0,−d) and ~r4 = (d, 0,−d). 0.5

Similarly, we can expect to have Q2=Q4. 0.5

After some trial and error, one can notice that the choice Q2 = Q4 = −Q1 and Q3 = Q1 leads to a
vanishing potential on the conducting plates. 0.5

Indeed, by saying that ri is the distance from the position ~r to the charge i, we have

V (r) =
1

4πε0

[
Q1

r1
− Q1

r2
+

Q1

r3
− Q1

r4

]
.

On the vertical plate, we have r1 = r2 and r3 = r4 such that indeed V = 0. On the horizontal plate we
have r1 = r4 and r2 = r3 so we also have a vanishing potential. 1

A more explicit computation making less explicit use of symmetries, or a more implicit reasoning with the
symmetries is fine as long as the reasoning is correct and indeed shows that the choice is the correct one.
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ii. What is the corresponding potential V (x, y, z) as a function of the coordinates (x, y, z), the
distance d and the charge Q1? The expression can be left as a sum of N terms, it does not
have to be fully simplified. 1
With the charges and positions from the previous question, we find the potential

V (x, y, z) =
Q1

4πε0

[
1√

(x− d)2 + y2 + (z − d)2
− 1√

(x+ d)2 + y2 + (z − d)2

+
1√

(x+ d)2 + y2 + (z + d)2
− 1√

(x− d)2 + y2 + (z + d)2

]
.

(C.2)

1
The solution could be written in a different form as long as the potential is written explicitly as a function
of the required quantities.
iii. Draw schematically the field lines of the charge-half-plane conductors system, assuming
that Q1 < 0 (in a separate sketch, not on the problem sheet). 2
The drawing should qualitatively look like the following image (do not consider the A,B,C,D arrows and
the point X), but with the field lines stopping at the level of the two half-plane conductors.

https://physics-ref.blogspot.com/2019/01/the-diagram-shows-electric-field.html
The field lines flow from positive to negative charges. 0.5
There is no straight line between the charge Q1 and the charges Q2 and Q4. 0.5
The field lines stop at the level of the conductors. 0.5
The overall shape is qualitatively similar to the picture above. 0.5
Part D. Circular mirror charges 4
It is also possible to define mirror charges for curved geometries.
i. Let us now consider the system shown in Fig. D.1. It turns out that only one mirror
charge is needed to reproduce the corresponding boundary conditions. What is its value Q2

and position ~r2 = (x2, y2, z2)?
Hint: you are allowed to use without proof that a potential satisfying the appropriate
boundary conditions at the positions (r, 0, 0) and (−r, 0, 0) satisfies the boundary conditions
on the whole sphere.
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r

r/2

O Q1

Figure D.1: Spherical grounded conductor of radius r with centre O at position ~r0 = (0, 0, 0) and charge
Q1 at position ~r1 = (x1, y1, z1) = (r/2, 0, 0). We see here a slice at y = 0 of the sphere in the xz-plane.

2.5

By symmetry considerations, we expect the mirror charge to lie on the x-axis. 0.5

Using the hint, we consider the position (r, 0, 0) where the potential should vanish. This gives us the
condition

1

4πε0

[
Q1

r/2
+

Q2

|x2 − r|

]
= 0.

One can convince oneself qualitatively that having x2 − r < 0 cannot lead to the appropriate boundary
conditions on the full sphere. We then get

Q2

x2 − r
= −2Q1

r
.

0.5

Considering now the position (−r, 0, 0) we obtain the condition

1

4πε0

[
Q1

3r/2
+

Q2

x2 + r

]
= 0,

which gives
Q2

x2 + r
= −2Q1

3r
.

0.5

With the first condition we have Q2 = −2Q1
x2−r
r , which we can insert in the second condition to obtain

2Q1

r

x2 − r

x2 + r
=

2Q1

3r

and thus
x2 − r =

x2 + r

3
,

which finally gives
x2 = 2r.
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The position of the mirror charge is thus (x2, y2, z2) = (2r, 0, 0). Inserting this back in the first conditions
we also get Q2 = −2Q1. 1

A more explicit computation making less explicit use of symmetries, or a more implicit reasoning with the
symmetries is fine as long as the reasoning is correct and indeed shows that the choice is the correct one.

ii. What is the corresponding potential V (x, y, z) as a function of the coordinates (x, y, z), the
radius r and the charge Q1? The expression can be left as a sum of two terms, it does not
have to be fully simplified. 1.5

Using our previous results, we find

V (x, y, z) =
Q1

4πε0

 1√
(x− r/2)2 + y2 + z2

− 2√
(x− 2r)2 + y2 + z2

 .

1.5

The solution could be written in a different form as long as the potential is written explicitly as a function
of the required quantities.
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